A Novel Voice Sensor for the Detection of Speech Signals

نویسنده

  • Kun-Ching Wang
چکیده

In order to develop a novel voice sensor to detect human voices, the use of features which are more robust to noise is an important issue. Voice sensor is also called voice activity detection (VAD). Due to that the inherent nature of the formant structure only occurred on the speech spectrogram (well-known as voiceprint), Wu et al. were the first to use band-spectral entropy (BSE) to describe the characteristics of voiceprints. However, the performance of VAD based on BSE feature was degraded in colored noise (or voiceprint-like noise) environments. In order to solve this problem, we propose the two-dimensional part-band energy entropy (TD-PBEE) parameter based on two variables: part-band partition number upon frequency index and long-term window size upon time index to further improve the BSE-based VAD algorithm. The two variables can efficiently represent the characteristics of voiceprints on each critical frequency band and use long-term information for noisy speech spectrograms, respectively. The TD-PBEE parameter can be regarded as a PBEE parameter over time. First, the strength of voiceprints can be partly enhanced by using four entropies applied to four part-bands. We can use the four part-band energy entropies for describing the voiceprints in detail. Due to the characteristics of non-stationary for speech and various noises, we will then use long-term information processing to refine the PBEE, so the voice-like noise can be distinguished from noisy speech through the concept of PBEE with long-term information. Our experiments show that the proposed feature extraction with the TD-PBEE parameter is quite insensitive to background noise. The proposed TD-PBEE-based VAD algorithm is evaluated for four types of noises and five signal-to-noise ratio (SNR) levels. We find that the accuracy of the proposed TD-PBEE-based VAD algorithm averaged over all noises and all SNR levels is better than that of other considered VAD algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Algorithm for Voice Activity Detection Based on Wavelet Packets (RESEARCH NOTE)

Speech constitutes much of the communicated information; most other perceived audio signals do not carry nearly as much information. Indeed, much of the non-speech signals maybe classified as ‘noise’ in human communication. The process of separating conversational speech and noise is termed voice activity detection (VAD). This paper describes a new approach to VAD which is based on the Wavelet ...

متن کامل

An Electrochemical Sensor Based on Novel Ion Imprinted Polymeric Nanoparticles for Selective Detection of Lead Ions

In this study, the novel surface ion-imprinted polymer (IIP) particles were prepared and applied as a electrode modifier in stripping voltammetric detection of lead(II) ion. A carbon paste electrode (CPE) modified with IIP nanoparticles and multi-walled carbon nanotubes (MWCNTs) was used for accumulation of toxic lead ions. Various factors that govern on electrochemical signals including carbon...

متن کامل

A Novel Frequency Domain Linearly Constrained Minimum Variance Filter for Speech Enhancement

A reliable speech enhancement method is important for speech applications as a pre-processing step to improve their overall performance. In this paper, we propose a novel frequency domain method for single channel speech enhancement. Conventional frequency domain methods usually neglect the correlation between neighboring time-frequency components of the signals. In the proposed method, we take...

متن کامل

A Novel Radar Sensor for the Non-Contact Detection of Speech Signals

Different speech detection sensors have been developed over the years but they are limited by the loss of high frequency speech energy, and have restricted non-contact detection due to the lack of penetrability. This paper proposes a novel millimeter microwave radar sensor to detect speech signals. The utilization of a high operating frequency and a superheterodyne receiver contributes to the h...

متن کامل

A Novel Method for Detection of Epilepsy in Short and Noisy EEG Signals Using Ordinal Pattern Analysis

Introduction: In this paper, a novel complexity measure is proposed to detect dynamical changes in nonlinear systems using ordinal pattern analysis of time series data taken from the system. Epilepsy is considered as a dynamical change in nonlinear and complex brain system. The ability of the proposed measure for characterizing the normal and epileptic EEG signals when the signal is short or is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2013